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Abstract— Household and service industry robots will become
much more useful when they can effectively communicate with
humans and better understand the world. A natural speech
interface and understanding of the world could enable robots
to take on more general purpose use, as users could interactively
specify tasks, and robots could provide feedback and semantic
knowledge of the world in an intuitive way.

In this paper, we describe an initial formulation and results
for a natural speech interface on the ballbot, an agile and safe
robot that balances on a single spherical wheel. We develop
an end-to-end system for perceiving the world, responding to
user questions, and receiving natural language commands to
navigate in the world. We then demonstrate this system through
an example indoor service scenario.

I. INTRODUCTION

Household and service industry robots will become much
more useful when they can effectively communicate with
humans and better understand the world. In contrast to
the domain-specific tasks that service robots are limited
to now, such as vacuuming, robots with a speech inter-
face could be commanded to accomplish a wide variety
of tasks. Speech could be used as an intuitive and high
bandwidth interface between user and robot. A user could
specify tasks; the robot could ask for clarifications of an
ambiguous task, could provide feedback about the task, and
could answer questions about world observations and other
derived semantic knowledge of the world. With advances
in natural language interaction, service robots could achieve
more general purpose use—an analogous step up from a
calculator to a general purpose computer.

Few robots today offer an intuitive interface for users to
interact with them; completing tasks almost always involves
explicit programming. This either limits the benefits of robots
to expert users, or else only enables a trivial set of function-
ality. Many human-sized mobile service robots now have
robust ability to autonomously navigate in indoor spaces.
With growing object detection capabilities and semantic
understanding of scenes being developed in the computer
vision field [1], robots could offer great utility to users.
However, currently, most advanced functionality is often
unavailable to users because there are no comprehensive
natural interfaces.

A promising method for giving commands and receiving
information in a human-centric way is through speech, or
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Shmoo, go to the office. 
Look what's on the table.
Come back to the lab. 
Tell me what you saw.

Fig. 1: We develop a system to allow a user to naturally
communicate with the ballbot (called Shmoobot, or Shmoo)
to issue commands and receive information about the world.

natural language. Recent advances in voice recognition tech-
nology and its widespread adoption in the household, with
products such as the Amazon Echo and Google Home, make
this an exciting and promising area of research for service
robotics and human robot interaction (HRI). Speech is a
natural means of communication for humans, and has two
large benefits over other methods for commanding robots: 1)
a speech interface is intuitive; untrained users can quickly
learn to use unfamiliar systems, and 2) it requires little
cognitive load; it can be used with little active attention. With
a comprehensive speech interface, non-expert users could
interact with robots to complete useful tasks and gain world
information, without having to be trained and without having
to think much about it. These properties, coupled with a
capable HRI robot platform, could lead to wide-spread and
frequent daily use of household service robots.

This paper focuses on the system integration of a speech
interface, mobility, object detection, and world modeling
systems, on a dynamically stable mobile robot to enable con-
trol through natural language and communication of world
observations. The system we develop enables the user to
interact with the robot in a natural way to give commands and
gain world information. This is meant to serve as an initial
formulation of a more extended system that we believe, with
more probabilistic modeling and data-driven components,
could be used to generate a widely useful, general purpose
service robot.

II. RELATED WORK

Most approaches to using natural language to command
robots consist of three primary components: 1) natural lan-



guage interpretation, 2) plan generation and execution, and
3) world modeling [2]. In natural language interpretation, the
recognized text is processed to determine the action or intent
that the user specified, and to identify symbols, or words in
the phrase that represent objects in the real world. These
symbols are then “grounded” [3], where they are mapped
to concrete objects (groundings) in the world. Much work
has been done to develop methods for efficiently grounding
symbols in large search spaces [4]–[8]. Next, plan generation
and execution involves determining a way to execute a user
specified action with respect to the grounded symbols in
the command. For a navigation action, this would entail
grounding the destination symbol, and any spatial constraint
objects (e.g., to the right of object X), to known objects in the
world and planning a route through the environment. Finally,
world modeling addresses the problem of maintaining a
persistent representation or state of relevant concepts in the
world. In many cases, this involves probabilistic beliefs of
object classes and locations, such as in [9]. The world model
is populated by processing sensor inputs, such as object
detections from a vision system, and can be used to facilitate
grounding by providing search candidates for the symbols
referenced in natural language commands.

Another large thread of work has been done on indoor
service robots interacting with people. Some classic ex-
amples include Shakey the Robot [10] and the museum
robots, RHINO [11] and Minerva [12]. Several other works,
beginning with [13], used gesture recognition for command-
ing robots to do certain tasks. Other interfaces commonly
used are web applications and on-board touch screens. One
recent example is the CoBot [14], a robot deployed for an
office service scenario, that autonomously navigates through
a building, and has a web interface and touch display for
commanding it to do tasks, such as driving to different offices
to deliver small items such as papers. These robots interact
with users via traditional interfaces, but the lack of a speech
interface downgrades their capability to facilitate effective
communication with users. The museum robots have spoken
components for guided tours, but they do not facilitate robust
interaction. The CoBot has a few screen based interfaces,
which the user must click through to issue commands.

At the intersection of these two threads, natural language
interaction combined on indoor mobile service robots, there
are also several mentionable works. In [13], they develop
a system to provide natural language descriptions of the
environment, for a robotic assistive wheelchair that is man-
ually driven, so that it can form a semantic map of the
environment. Unlike the current work, speech is just used to
provide descriptions of the current environment of the robot
so that it can learn groundings. In [15], they use natural
language to command a PR2 robot to do various complex
household tasks, such as pouring a cup of tea or making
a bowl of ice cream. In this case, they use much more
complex action primitives for doing tasks, and can represent
more complicated sequence of actions. They, however, do
not discuss methods for interactive communication.

This paper differs from previous work in two important

TABLE I: Comparison of human, original ballbot, and
Shmoobot dimensions

Human
(average male)

Original ballbot Shmoobot (this
paper)

Height (m) 1.7 1.7 1.2
Shoulder width
or diameter (m)

0.45 0.40 0.28

ways: 1) it utilizes speech to not only facilitate giving
robot commands, but also for receiving the robot’s gained
knowledge of the environment, and 2) it is done with a safe
and agile robot, extremely well suited for HRI. None of the
works we mention effectively explore the interaction of two-
way communication for mobile indoor service robots. In the
past, focus has primarily been on developing methods to
issue commands, or use natural language to develop better se-
mantic mapping and symbol grounding. This work develops
methods for users to not only specify navigation commands
to a robot, but also for the robot to answer queries about
knowledge gained from commands. The user can specify
areas to go to and observe, and additionally interface with
the robot’s world model to question the robot for knowledge
that it has gained, such as where certain objects are or what
is in certain locations. Conducting the work on the ballbot
platform is also significant, because as discussed in Section
III, the ballbot provides many advantages over other robots
for interacting with humans.

III. BACKGROUND ON THE BALLBOT

Critical in a robot that communicates and remains in close
contact to humans is an ability to move safely in human
environments. The system this paper describes is developed
on a ballbot, an omnidirectionally compliant human-sized
robot.

The ballbot, introduced in [16], is a robot that balances on
a ball driven by two sets of parallel rollers. The drive system
is termed Inverse Mouse Ball (IMB) drive, as inversely to
old computer mouses which used a free-rolling mouse ball
to move roller encoders and determine mouse displacement,
the IMB uses four rollers to actuate the ball and keep
the ballbot balanced. During operation, the ballbot uses an
Inertial Measurement Unit (IMU) to sense the lean angle
and motors to drive the rollers and actively keep its center
of gravity over the point of contact with the ground.

The original ballbot is an omnidirectional robot, equipped
with arms, and with dimensions approximating that of hu-
mans (see Table I). The ballbot used in this paper, called
Shmoobot, is a slightly smaller version of the original
ballbot, and currently does not have any manipulators.

The core advantages of the ballbot over other robots in hu-
man spaces are dynamic stability and omnidirectionality.
Dynamic stability refers to the property of the ballbot that it
must actively work to keep balance by actuating the rollers.
Humans are also considered dynamically stable, as while
standing, their muscles must actively work to keep them from
falling over. In contrast to this, statically stable robots such as



Fig. 2: The smaller ballbot, called Shmoobot (1.2 m height,
0.28 m diameter) is shown in the foreground, without the
camera or Amazon Echo Dot attached. The original ballbot
(1.7 m height, 0.40 m diameter) is in the background.

the PR2 rest on a wide base with several supporting wheels
and can maintain their pose without any effort. For basic
robotic service tasks that have been the focus of much prior
human robot interaction (HRI) work, dynamic stability adds
an unnecessary control challenge. However, for interacting
with humans in more complex ways, dynamic stability is
largely beneficial. It enables a robot direct control over its
center of gravity, allowing it to perform tasks impossible for
many statically stable robots. By being able to shift its weight
and by having omnidirectional mobility, the original ballbot,
equipped with arms, can do tasks such as:

• Help people out of chairs [17]. This is infeasible for
most robots with static bases, as they cannot lean or
sustain large enough forces to help somebody out of a
chair, without tipping over.

• Lead someone by hand [18]. This is possible with
other robots, but not in a natural way, as they cannot
move omnidirectionally or react to large forces, such as
from somebody losing balance and applying a sudden
jerk.

The Shmoobot does not have not any actuators to manip-
ulate the world, so the advantages of the ballbot platform
directly relevant to this paper are:

• Safety. While they are moving through an environment,
ballbots can easily be pushed away with only a finger.1

In collisions, other robots are susceptible to tipping or
else can hurt a person by running into them.

• Moving in most spaces a humans can.2 Ballbots can
navigate in cluttered human environments [19], [20],
can rotate in place, and move omnidirectionally. Other
robots can easily be trapped in cluttered environments
and be unable to rotate their wide bases.

• Similar profile to human. As previously discussed, the

1https://youtu.be/8BtDuzu2WeI?t=1m55s
2The ballbot can handle slopes and bumpy terrain, but is currently limited

to approximately level spaces (no stairs, etc.).

World Model

chair

Table

Office Lab

Workbench

semantic label metric data

command response

User

Speech 
Control

Robot Control 

& Localization

Navigation

Perception

3D Point

Estimation

Object

Detection

bounding 
boxes

objects localization
data

metric

command

metric

command

laptop mouselaptop

Fig. 3: Interaction of system components

ballbots have similar dimensions to humans, allowing
them to move easily in narrow human spaces and still
interact at human height. Statically stable robots with a
similar profile would be susceptible to tipping.

• Moving in crowds of people. Some work has been done
in [18]. Other robots cannot move compliantly through a
crowded area, and if they are stationary, become a static
obstacle. Ballbots, if stationary, can easily be pushed out
of the way.

Ballbots offer many of the same advantages that a fully
humanoid bipedal robot does, and they have, at present, a
more reliable mobility system for indoor spaces. Ballbots are
a versatile platform for physical Human Robot Interaction
(pHRI) and play a key component in the formulation of this
system.

IV. APPROACH

To develop this system, we integrated and developed
interfaces for perception and navigation components, using a
world model to maintain relationships of metric and semantic
labels so that they could be accessed by a central speech
interface. A diagram illustrating user interaction and com-
munication within the system can be seen in Figure 3. The
user interacts directly with the speech interface using natural
language, with semantic queries and commands such as “go
the office.” The command verbs (e.g., “go”) get mapped to
a discrete set of robot actions in the speech control, and the
semantic information (e.g., “office”) in these interactions is
resolved into metric information by the world model (e.g.,
coordinates (x = 3, y = 3)). Thus, the user can give natural
commands that get executed with respect to the metric data
of discrete objects in the world.

A. Platform

The Shmoobot is running the Robot Operating Sys-
tem (ROS) [21] and this is used to facilitate communica-
tion between all software components. For navigation, the
Shmoobot is equipped with a Hokuyo UTM-30LX laser
rangefinder and uses the ballbot navigation stack, developed
in [19], [20]. For vision, the Shmoobot is equipped with
an on-board Orbbec Astra RGB-D camera, which produces
640×480 size RGB and depth images. For a speech interface,

https://youtu.be/8BtDuzu2WeI?t=1m55s


Fig. 4: The bounding box for the laptop, provided by the
object detector [22], is used to segment the corresponding
3D point cloud data. These segmented 3D points, shown
in green, are then used as an estimated 3D location of the
object, where the centroid of the points is assumed to be
the center of the laptop. This method has some inaccuracies
when bounding boxes include pixels not part of the object,
or when the detected bounding boxes do not directly map to
the point cloud points, as seen with points from the water
bottle, table, and wall, being included in the calculation of
the laptop centroid.

it uses an on-board Amazon Echo Dot to send raw audio
waveforms to Amazon servers and receive processed text
via a custom Amazon Alexa skill.

B. Natural language processing

The speech interface receives processed text from an on-
board Amazon Echo Dot and parses this processed text to
a discrete set of actions or queries, along with semantic
parameters. Actions specify the tasks that the robot can ex-
ecute, e.g., move and observe. Queries are questions that the
robot can respond to. Semantic parameters are natural labels
for concepts in the world (such as “office” or “keyboard”)
and are resolved by the robot’s world model into metric data
that the central speech control can use to execute actions
to detect objects, move in the environment, or respond to
user queries. The speech interface is the primary point of
contact between the user and the knowledge structure and
capabilities of the robot.

C. World model

For the robot to be able to reason and create more
intelligent relations of the world, we developed the following
hierarchical world model, including 1) locations, 2) sur-
faces, and 3) objects. For example, objects such as a laptop
would be on the surface of the table, inside the location of the
office. This is one possible natural representation for humans
and supports intuitive commanding and querying. A user can
tell the robot to go to a specific room and look what is on a
table in that location.

The representations of these objects, namely the semantic
label and information associated with underlying metric
data, are saved in a non-relational database structure. This
representation allows programmatic querying by either the
metric data (such as location, or radius of locations) or by
semantic label (e.g., bottle, office, etc.). The world model
is key to integrating the perception and speech components
with the control of the robot system. It resolves the semantic

labels in the speech interface to metric data that is used to
plan trajectories and to change the robot’s orientation.

D. Perception

The perception module uses the on-board RGB-D camera
to detect objects and generate estimates of 3D locations of
objects to add to the robot’s world model. The module uses
the YOLOv2 object detector [22] to detect a discrete set of
the objects from the MSCOCO data set [23]. The output
of the detector is a set of labels, associated probabilities
of the labels, and bounding boxes in a 2D image. The
bounding boxes are then used to segment point cloud data
from the RGB-D camera to obtain the matching points for
each object, as shown in Figure 4. The corresponding 3D
points from each bounding box are used to calculate an
estimated centroid for each object. This allows the object
detections to be grounded in global 3D space. The advantage
of this approach over other common methods is that it does
not require full 3D models of all objects. The disadvantage,
illustrated in Figure 4, is that the segmentation based on
bounding boxes is imperfect and points from other objects
or the background can be included in centroid estimation.

E. Navigation

For a grounded location in a command, the system pro-
vides coordinates of a goal position and sends this to the
ballbot navigation stack. The navigation stack takes in the
current pose of the robot and a goal position, and plans a
path to execute trajectories of continuous, smooth motion,
taking into account the unique dynamics of the ballbot. The
navigation can quickly replan trajectories and is robust to
dynamic obstacles [20].

Several experiments were conducted where the ballbot re-
ceived commands with respect to locations in the world. Lo-
cation groundings were straightforward deterministic map-
pings, stored in the world model, that could be told to the
robot (e.g., by saying “you are in lab”), or be loaded from a
configuration file. We did not conduct any experiments where
the ballbot would navigate to objects it has previously seen
in the world, but this is well within the capabilities of the
system.

V. EXPERIMENT

We develop an indoor service scenario as a proof of
concept demo and showcase of the system. This scenario
consists of a user commanding the robot, in spoken English,
to go to another room, look what is on a table there, and
come back to tell the user what it saw. The flow of each of
these commands through the system is described below.

A. “Go to the office”

The first command is spoken to the robot and enters the
system through the speech interface. The speech interface
maps the phrase “go to”, to the navigation action. It then
passes the semantic parameter “office” to the world model
to resolve into metric coordinates. If no “office” is found in
the world model, the system will give immediate feedback



(a) User commands Shmoobot to, 
"Go to the office, looks what's on 
the table. Come back to the lab."

(b) Shmoobot autonomously 
navigates to the office. The person 
is only following in case of a 
navigation system failure.

(c) The robot takes a picture and 
depth cloud image of the table, 
and uses the YOLOv2 object 
detector to detect bounding boxes.

(d) The robot autonomously 
navigates back to the lab.  The 
user asks the robot, "Shmoo, what 
have you seen?"

(e) The robot responds with a list of 
items ("I have seen a bottle, 2 
monitors, a keyboard, etc.").  The
system displays images and 3D 
coordinates of the objects.

Fig. 5: Indoor service scenario

to the user, by speaking, “I don’t know where the office is.”
Also, because the navigation may be a long running goal, it
is added to a command queue and subsequent commands in
sequence can be given to the robot to execute.

B. “Look what is on the table”

The second user command follows a similar flow through
the system. The phrase “look what” is mapped to an observe
action. The phrase “on the table” is passed as a semantic
parameter which similarly gets resolved by the world model
to metric coordinates. With these coordinates, the robot turns
its body in that direction and takes a picture to detect objects
on the table and place them into the world model. Similarly,
it will give immediate feedback if no surface, such as a table,
is known.

C. “Come back to the lab. That’s all.”

Just as in the first command, this is interpreted as a
navigate action, and the semantic parameter “lab” is resolved
into the coordinates of the lab in the world model—in this
case, near the starting place of the robot.

“That’s all” is one of the phrases to command the ballbot
to execute a series of queued commands. Upon hearing this
command, the robot will ask for confirmation by speaking
back the queued commands. If the user confirms the actions,
the robot will then execute them.

D. “What have you seen?”

Finally, when the robot completes its tasks and returns to
the lab, the user can ask what the robot has observed. The
phrase “What have you seen” is mapped to a query with
no parameters. This query can also be invoked at any time.
This pulls from the world model all the objects that have been
detected. These are spoken to the user (in a phrase something
like “I have seen two monitors, a laptop, etc.”), and images of
objects and their corresponding 3D locations on a map can be
displayed on an offline computer screen. In this example, the
query did not have any parameters, but the system also allows
the user to query with semantic parameters, such as an object
label or room. For example, “Did you see a laptop?” or “Have
you seen a laptop?” will map to a query with parameter
“laptop,” and cause the robot to respond with “I have seen
one laptop” and show an image and map location of the
detected laptop. One can imagine this functionality could be
used to find lost things, or a number of related tasks.

Fig. 6: Detected objects, along with their estimated global 3D
locations, are added to the world model. The world model
keeps track of the locations and other derived metadata of the
objects, such as the semantic location (determined by metric
coordinates). The user can then query the world model for
these objects at any time.

VI. CONCLUSION

We have developed an end-to-end system for a dynami-
cally stable mobile robot to receive natural language com-
mands and communicate world observations. This system,
unlike previous work, allows the user to command a robot
to actively search an environment and to ask questions about
gained world knowledge. It is also done in an indoor service
environment on a robot well suited for safe interactions
with humans. The shmoobot ballbot used in this study is
particularly adept since it can move and navigate through
the environment at a fast walking speed, has omnidirectional
compliance; has a gearless low noise friction drive; and,
unlike a traditional statically stable mobile robot, it is gravity-
referenced which affords a stable platform for video input.

This is an initial formulation of the system, and with the



framework outlined, there are many potential extensions of
this work.

VII. FUTURE WORK

Whereas the demonstrations were simple, in that the
surfaces and locations were pre-loaded into the world model,
the system could allow more intelligent sources of input.
Further methods for determining room location and location
of a table as well as probabilistic representations and methods
for interpreting speech commands could be implemented, as
in [4]–[8].

A. Language grounding and spatial reasoning

The system described in this work is limited to discrete,
deterministic mappings between symbols in commands and
objects in the real world. With a way to handle ambiguities
arising from multiple objects of the same label and of
representing the spatial relation of objects in the world, a
more natural interface could be developed. The user could
specify actions with phrases, such as “the table to the right
of the door,” using learned spatial relations as in [24].

More intricate label grounding could also be used in nav-
igation commands. With probabilistic grounding of symbols
and learned spatial relations applied to a cost map as in [24],
the robot could be commanded “go to the left of the person,
to the table.”

B. Multi-hypothesis probabilistic world model

Another important extension to improve the robustness
and adaptiveness of this system, is in probabilistic world
modeling. The object detector and location pipeline produced
some uncertainties in both the labels and positions of objects
which were largely ignored in our system. These data could
be used to maintain a multi-hypothesis state of the system as
in [9]. This would be more adaptive to movement of objects
and time variance. Furthermore, it would be necessary in
integrating continuous real-time object data.
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